Sevish Music

Video tutorial – How to export various tuning file formats in Scala

I have covered this topic before on my blog, but I thought I could do better and make a short video tutorial.

When you’re designing musical tunings in Scala, you might eventually want to export your tuning to use it in a synthesizer. Synthesizers support various tuning file formats, so you’ll need to know how to make a few different kinds. This video shows you how to export Scala files (.scl), export AnaMark tuning files (.tun), and export MIDI Tuning Standard dumps (.mid). Right at the end of the video you’ll also find out how to retune other synths like the Yamaha DX7ii.

Wasting & Thirsting by Cryptic Ruse

Increasingly, people in this crazy world are looking for something positive, something uplifting so they can get reprieve from the chaos around them. For some, that comes as an addiction to sharing inspiring quotes on Facebook, while others find peace meditating to mass-produced new-age music.

But we understand that not everybody is in that boat. Some people are actually looking for more DOOM in their lives. This is where Cryptic Ruse’s Wasting & Thirsting comes in.

Wasting & Thirsting is an album of microtonal doom drone metal. It is an atmospheric dark-zone where down-tuned distorted guitar and a ton of processing create the entirety of the music. I could barely tell where one track ends and the next begins as the effect is so hypnotising. Each of the 3 tracks uses a different microtonal tuning system, and yes Cryptic Ruse had a custom guitar made for each tuning.

This music throbs, beats and moans as clusters of sludgy microtones overlap each other. There is no percussion. There are no vocals. Just a droning anti-aum to help you fade away into t h e a b y s s o f d e s p a i r.

Like any good drone, you sorely miss it once it ends. The only solution is to flip over the mp3 and play it again.

Wasting & Thirsting by Cryptic Ruse was released on August 14, 2016. You can download it from their bandcamp.

Making microtonal music with tracker software

A tracker is a type of music sequencer that was popular back in the day. The tracker scene is still alive, and you can thank it for all the catchy tunes you hear while using keygens. A handful of trackers also support microtonal scales, and I wanted to share some of those today.

OpenMPT (Open ModPluG Tracker)

Open ModPlug Tracker is a completely free music tracker for Windows. It can also be microtuned, so that you can compose music that explores tonal systems made before and after the reign of 12-tone equal temperament (from here on referred to as ‘The Dark Ages’).

OpenMPT

OpenMPT can be microtuned by way of Scala files or TUN file import. (Learn how to produce those .tun files, or download some ready made tuning packs). You an also input notes directly, though they must be in the form of decimals. Once a tuning is imported into OpenMPT, you can edit it within the Tuning Properties screen.

OpenMPT microtonal tuning

One awesome feature is that OpenMPT will name the notes of your tuning with letters A-Z from the alphabet. This way, if you have more or less than 12 notes per octave then you can easily recognise your pitches. A5 is one octave above A4, X5 is one octave above X4 etc. It’s as easy as that. (DAW engineers take note, this is essential for microtonalists! We don’t need to see 12-TET note names when we’re using microtonal scales).

If you need even more control over your note pitches, it’s possible to fine-tune the frequency of each individual note.

Note that if you’re using VSTs within OpenMPT, the microtuning feature won’t work for those. Stick to the sampled instruments and your OpenMPT tunings will work just fine.

Little Sound Dj

LSDj (Little Sound Dj) is a music tracker made for the original Game Boy, utilizing the Game Boy’s sound capabilities. It will run on real hardware via a flash cart, or you can run it in an emulator. I run it on an emulator on my smartphone. It’s a great way to kill some time on the bus/train/toilet.

LSDJ

By default, the frequency tables inside the ROM file are tuned to 12-tone equal temperament. But with the aid of a super helpful Perl script by abrasive, the frequency tables in LSDj can be fully microtuned to any tuning system you want. Even non-equal, non-just and non-octave scales are possible – it’s very flexible!

To do this, first of course you’ll need a copy of LSDj, then head to the Microtuning HOWTO page on LSDj’s wiki and download lsdj_tune1.4.

Note, the compiled .exe for lsdj_tune1.4 may give you the following message:

&Config::AUTOLOAD failed on Config::launcher at PERL2EXE_STORAGE/Config.pm line 72.

So it’s best to install Perl on your system and run the Perl script itself. For me, this works just fine. But note that you need to use the command line in order to run the script.

With all that set up, your best bet is to move LSDj and the tuning script into the same directory, then make a .bat file to set up your tuning command. I prefer using a .bat instead of writing directly in the command line, because I can save my command, edit it and repeat it later when I want to change the tuning.

When you run the command, you’ll end up with a patched version of the original ROM, so for each tuning you wish to use, you’ll get a new ROM. My Game Boy folder has several of them for various tunings.

Similarly to OpenMPT, with lsdj_tune you can set the note names of your tuning. This way when you make music in LSDj you won’t be encumbered with 12-TET note names from The Dark Ages. Here’s a really simple example using 5-EDO and the note names U V X Y Z:

perl lsdj_tune1.4.perl --cents 0,240,480,720,960,1200 --base A5 440 --names U,V,X,Y,Z --rom lsdj.gb --out lsdj_5edo.gb

Note: the names parameter doesn’t work in ET mode so here I have specified 5-EDO explicitly using cents.

Then load up your new patched LSDj ROM and enjoy! — 2 pulse channels, 1 PCM channel and 1 noise channel is way more exciting with microtones.

LSDJ-5edo

Renoise

Renoise instruments can be retuned by using a neat scl to xrni tool.

First you’ll need to download some Scala files (or make your own). Then install the tool by downloading it and dragging it on to your Renoise window. Within Renoise, make sure that your instrument is selected, and then run the tool. You’ll be able to load up one of your Scala tuning files and it will be applied to the instrument.

MikyTracker

MilkyTracker doesn’t have any microtuning function built in, but you can edit the pitch of each individual note. This can be done by using edit mode and assigning the same sample to different notes of the keyboard, each with some detuning.

Obviously this takes a while to set up, so you might find OpenMPT to be more user friendly. Nevertheless this hasn’t held some people back. Here’s the proof, a tasty jam in just intonation using MilkyTracker:

Other trackers

If there are more trackers that support microtonal scales then I would love to hear about them.

Important links

Further reading

FM synthesis with Xen-Arts FMTS 2 video tutorial

This is my first video tutorial, showing how to design a distorted bass sound using FM synthesis in Xen-Arts’ FMTS 2 VSTi.

FMTS 2 is a freeware VST instrument for Windows which allows you to play microtonal scales. It’s developed by Xen-Arts. The FM operators can themselves be tuned to microtuning-related frequency relationships, so that the timbre has a sort of spectral microtuning within it. Quite mindblowing stuff and seriously underrated.

Download Xen-Arts FMTS 2– http://xen-arts.net/xen-fmts-2/

The tutorial just demonstrates a basic workflow, and it’s possible to go way deeper with this synth. If there is any interest in further videos like this, best to leave a comment below or on the YouTube video itself.

99% of Western music is beans on toast

Could you survive on a diet of 12-tone equal temperament

Agree, disagree?

Free Ableton Drum Racks to customise your piano roll

I’ve written before about how DAWs don’t often allow a custom piano roll designed for microtonal musicians. If you’re using a scale with more or less than 12 notes, then the piano roll doesn’t match up with what you hear from the synth. As an Ableton Live user, I wanted to know what workarounds I could use right NOW in order to make composing microtonal music a little easier.

My goal: display custom note names for every note on the piano roll!

Enter the Drum Rack

Live Drum Rack set up for custom note names

Using a Drum Rack, it’s possible to change the note names displayed in the piano roll. Load up one of my sample Drum Racks (download here) and add it to an empty MIDI track. Create a MIDI clip on that track and make sure that ‘Fold’ is enabled on the piano roll. You should see something like below:

Ableton Live piano roll with a custom 9-note scale mapping

The example above shows a 9-note scale using the letters A B C D E F G H J.

Then, you must load your instrument on a new MIDI track, and connect the MIDI input of that track to the Drum Rack track (pre FX).

Routing for custom piano roll trick in Ableton

Once this routing is set up, you can compose in the piano roll of the Drum Rack track. The note names here can be a useful guide when you’re composing with microtonal scales.

Making these Drum Racks is time consuming because you have to name all 128 notes individually. I have done the hard work for you and made a pack of Drum Rack presets that you can drop into your project. Each one assumes that MIDI note 60 is middle C (this is the default for Scala keyboard mappings).

5 note scale: C, D, E, A, B
6 note scale: C, D, E, F, A, B
7 note scale: C, D, E, F, G, A, B
8 note scale: C, D, E, F, G, H, A, B
9 note scale: C, D, E, F, G, H, J, A, B
10 note scale: C, C#, D, D#, E, E#, A, A#, B, B#
11 note scale: C, C#, D, D#, E, F, G, G#, A, A#, B
12 note scale: lol
13 note scale: C, C#, D, D#, E, F, F#, G, G#, A, A#, B, B#
14 note scale: C, C#, D, D#, E, E#, F, F#, G, G#, A, A#, B, B#
17 note scale: C, Db, C#, D, Eb, D#, E, F, Gb, F#, G, Ab, G#, A, Bb, A#, B
19 note scale: C, C#, Db, D, D#, Eb, E, E#, F, F#, Gb, G, G#, Ab, A, A#, Bb, B, B#
22 note scale: C, C#, D, D#, E, E#, F, F#, G, G#, Hb, H, H#, J, J#, K, K#, A, A#, B, B#, Cb

>> Download the pack of Drum Racks (.zip) <<

About the chosen note names

The note names that I chose for some of the mappings are somewhat arbitrary. But there is some method to the madness.

The note names for the 5 note through to the 9 note mappings just assign a unique letter for each note. The 10 note mapping has 5 naturals and 5 sharps. The 11 note mapping is similar to the standard 12 note mapping, without F#. The 13 note mapping is similar to the standard 12 note mapping, but B# is added. The 14 note mapping uses 7 naturals and 7 sharps.

The 17 note mapping is based on a circle of fifths. C# is actually higher than Db because the fifth is tuned sharp (i.e. it’s a superpythagorean tuning).

The 19 note mapping is also based on a circle of fifths.

The 22 note mapping is designed for 22-EDO, so that the naturals give you a symmetrical decatonic scale such as those described in Paul Erlich’s paper Tuning, Tonality, and 22-Tone Temperament.

The limitations of the Drum Rack method

There seems to be a performance drop if you have too many of these Drum Racks active. I’m using a 4 year old laptop, and editing the Drum Racks become tedious once there were about 4 of them active.

But the main problem is that you can’t change the colour of the notes, so you’re still stuck with the 7-white 5-black Halberstadt layout. Try to look at the note names and ignore the note colours.

It would be a great help if Ableton would implement some kind of key colour mapping feature in the Live’s piano roll. The only way this could happen is for users to actively ask for it. You should go and make the feature request now at Ableton’s forums and beta website.

More words about microtonal computer music

My workflow for making microtonal music in Live
Why DAW developers should design a better piano roll
VSTs for playing and composing microtonal music
Microtonal music in Bitwig Studio

What’s the difference between ET and EDO?

What is the meaning of ET and EDO, and are they interchangeable?

ET: Equal Temperament
EDO: Equal Divisions of the Octave

In practice, yes they are interchangeable. For example, 12-ET and 12-EDO both refer to the exact same tuning which has 12 equal notes per octave. But there is a slight difference in their meaning.

12-ET suggests that the tuning is a temperament, i.e. it tempers some other interval, usually a just interval. 12-ET tempers 81/80, the syntonic comma, and other intervals.

12-EDO suggests that an octave has been divided into 12 equal parts, but otherwise doesn’t imply that tempering is of importance.

Some people will even say ET for 12-ET, 19-ET and 31-ET, while using EDO for 8-EDO, 13-EDO and others. Perhaps because 8-EDO and 13-EDO are not thought of as temperaments, whereas 12-ET, 19-ET and 31-ET are all useful meantone temperaments.

Personally, I always use EDO in my own thinking and private communication with other microtonalists, but will use TET or ET when I need to be understood by a larger, mixed audience.

To complicate things further, some folks use ED2 or ED2/1 synonymously with EDO, because the octave is equal to the ratio 2/1. The good thing about this format is that we can generalise it for other scales that divide some interval into equal parts (e.g. EDphi, ED3/2, ED4). I welcome the move to this kind of generalised terminology that helps us describe more tunings with less words.

The world of xenharmonic jargon is often difficult to navigate. Once you get your head around it, you can forget about the tuning theory politics and remember that the important part is to make inspiring and enjoyable music!

Stereo Panning in Ableton Live

Just wanted to share a super simple Ableton Live effects rack. Despite its simplicity, this is the rack I use the most (in fact it’s my default rack preset). It’s a stereo pan. Download it.

Stereo Pan effect rack for Ableton Live

You see, Ableton Live strangely omits stereo panning while other DAWs such as Logic Pro and Pro Tools sensibly include it.

That thing that looks like a pan pot on the channel strip? Yeah that’s a balance control. It doesn’t actually let you manipulate a stereo signal, it just makes the left or right channel quieter. Stereo panning is different; it allows you to pan the left and right channel independently to any part of the stereo image.

I use this effects rack to tightly control the stereo image of my tracks and busses. And I never use Live’s balance control unless it’s on a mono track.

Installing the Stereo Pan effects rack

  1. Download Stereo Pan.
  2. Unzip the adg file.
  3. Drag the adg file on to an effects chain and Ableton will place the rack for you.

Example usage

  1. Instead of setting the balance control to 10 o’clock, try panning the left channel to 8 o’clock and the right channel to 12 o’clock.
  2. Create a return track with a stereo ping pong delay. Usually these delayed signals are hard left and hard right. Place the Stereo Pan rack after the delay to position the two delayed signals wherever you like in the stereo field.

If you’re interested, check out some of my sounds.

2 features we need in MIDI 2.0

MIDI has served musicians well for decades, but everyday microtonalists are struggling to make electronic music within the limitations of the MIDI spec. These limitations may not be apparent to your everyday musician, so I thought I would highlight some of the problems that are faced by those working in this field.

We have a problem with MIDI note numbers…

The existing MIDI standard allows you a mere 7 bits to store the value of the note being played. That gives us 128 notes in total. Oh don’t get me wrong, 128 notes is more than enough for standard tuning, but this isn’t 1890 anymore. People are starting to want something more than standard tuning.

128 notes simply isn’t enough for large microtonal scales. If I have 200 notes per octave, then to get a full piano range of 8 octaves I already need 1600 notes. If we were to represent every pitch of this scale with a MIDI note number, then note numbers would have to be represented by at least 11 bits (2048 notes).

But having all those note numbers (and a tuning table with 2048 values) isn’t an efficient solution. Bandwidth is now cheap – so let’s forget about MIDI note numbers altogether! We can just send frequencies directly as single floats.

Lose the MIDI note numbers – adopt frequencies!

Consider that we have a MIDI 2.0 system where frequencies are sent instead of note numbers. On a standard MIDI 2.0 keyboard controller you press middle A and it sends a note on message with a frequency value of 440.0. A connected MIDI sound module receives the message and starts outputting a sound at 440 Hz.

Now consider how easy it is for the microtonalist – they only need to purchase a single MIDI keyboard controller that allows them to set up microtonal tunings, and then it automatically works with every MIDI 2.0 sound module! That’s a great leap ahead of the mess we have today, where all MIDI controllers output note numbers 0-127 and each sound module has its own quirky method of assigning frequencies to those notes.

Polyphonic pitch bend

Pitch bend in the current MIDI spec is monophonic, so it affects all notes on the channel at the same time. This is fine if you’re playing lead keyboard for an 80’s disco funk band, not so cool in the 2010s. If I’m playing a chord and I want to bend one pitch up while another pitch gets bent down, the only way to do it is to put each note on its own individual channel. It’s quite an insane way to work, and you can see why it’s difficult to use pitch bend to play microtonal polyphonic music.

If it were possible to assign pitch bend data for each individual note, then even synths which didn’t support microtonality could be forced to play microtonal scales easily – as long as they supported the pitch bend correctly.

The only way to play polyphonic microtonal music using the pitch-bend method today, is to put each voice on to its own MIDI channel, of which there are a maximum of 16. So already you’re now limited to 16 note polyphony, and this will only work with multitimbral synths (i.e. they can receive data on all 16 channels and output all notes at the same time).

What we can do before MIDI 2.0 release date

We can always write to developers thoughtfully, and ask them to add features the microtonalists need, with reasons why those features are helpful.

For now we’re stuck with the original MIDI, which to be fair is still an awesome spec. It allows us to connect pieces of kit from various manufacturers, and it all just works. So if you’re looking for ways to make microtonal music with MIDI instruments, here they are:

If you’re using hardware, then try to get hardware that can load and store tunings. Some synths support the MIDI tuning standard (MTS) which uses SysEx data to send note frequencies. It’s not commonly supported in most synths, so do your research before you buy.

If you’re working in a DAW, there are many VST instruments that can support microtonal scales. Sure you’re limited to 128 notes and monophonic pitch bend, but these instruments can set any frequency you like to each of the 128 notes. That’s a good start, and should keep you busy until we get a very microtonal MIDI 2.0.

EDIT: I’ve just been made aware of a new tuning method for MIDI synths. Worth a read!

I have written about my own workflow for microtonal composition using Ableton Live, Scala, and VSTs.

MK-SUPERDUPER is free download until June 8th

This April I released MK-SUPERDUPER, a new EP of microtonal electronic music. It’s now been made a free download until June 8th cos it’s my birthday week. So if you didn’t get it yet, give it a listen and a download! It’s quite similar to Rhythm and Xen.

If you bought the new EP already then thanks so much for the support. Now is a good chance to tell your friends so they can enjoy it too. I’m working on new music already, like this work in progress.

Happy listening folks.